Boundary blow-up for differential equations with indefinite weight

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Equations with Indefinite Weight: Boundary Value Problems and Qualitative Properties of the Solutions

We describe the qualitative properties of the solutions of the second order scalar equation ẍ + q(t)g(x) = 0, where q is a changing sign function, and consider the problem of existence and multiplicity of solutions which satisfy various different boundary conditions. In particular we outline some difficulties which arise in the use of the shooting approach.

متن کامل

From blow-up boundary solutions to equations with singular nonlinearities

In this survey we report on some recent results related to various singular phenomena arising in the study of some classes of nonlinear elliptic equations. We establish qualitative results on the existence, nonexistence or the uniqueness of solutions and we focus on the following types of problems: (i) blow-up boundary solutions of logistic equations; (ii) Lane-Emden-Fowler equations with singu...

متن کامل

Boundary blow up solutions for fractional elliptic equations

In this article we study existence of boundary blow up solutions for some fractional elliptic equations including (−∆)u+ u = f in Ω, u = g on Ω, lim x∈Ω,x→∂Ω u(x) = ∞, where Ω is a bounded domain of class C2, α ∈ (0, 1) and the functions f : Ω → R and g : RN \ Ω̄ → R are continuous. We obtain existence of a solution u when the boundary value g blows up at the boundary and we get explosion rate f...

متن کامل

Blow-up at the Boundary for Degenerate Semilinear Parabolic Equations

This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...

متن کامل

Blow - up Solutions for Gkdv Equations with K Blow

In this paper we consider the slightly L-supercritical gKdV equations ∂tu + (uxx + u|u|)x = 0, with the nonlinearity 5 < p < 5 + ε and 0 < ε ≪ 1 . In the previous paper [10] we know that there exists an stable selfsimilar blow-up dynamics for slightly L-supercritical gKdV equations. Such solution can be viewed as solutions with single blow-up point. In this paper we will prove the existence of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2003

ISSN: 0022-0396

DOI: 10.1016/s0022-0396(02)00073-6